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ABSTRACT

Cryptography is essential for secure online communications. Many different types of
ciphers are implemented in modern-day cryptography, but they all have one common
factor. All ciphers require a source of randomness, which makes them unpredictable.
One such source of this randomness is a random number generator. This thesis focuses
on Pseudorandom Number Generators (PRNG), specifically, a PRNG called Blum-
Blum-Shub (BBS). In this thesis, we make two modifications to BBS, and test our
modified generators for randomness using the National Institute of Standards and
Technology (NIST) tests. The original BBS is a quadratic generator that generates
bits based on the output of squaring terms in a sequence. The first modification
replaces the quadratic generator with a cubic generator. The second modification
generates bits faster by using more bits per iteration. Data collected in this thesis
suggests that the cubic modification performs just as well as the original generator.
In addition, data from this thesis suggests that taking more bits per iteration can
speed up this process while retaining randomness. In addition, we propose a new
cryptosystem based upon the modification of the BBS PRNG introduced in this
thesis.
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Executive Summary

Cryptography has become an essential part of our everyday lives. The rise of online
communication and e-commerce has created a constant demand for secure correspon-
dence. Many of our cryptosystems rely upon the use of random numbers. For this rea-
son, cryptographers design pseudorandom number generators (PRNG) as a method
of generating random numbers quickly. One such generator is called the Blum-Blum-
Shub (BBS) PRNG. The BBS PRNG takes two large Blum-prime numbers, p, q ≡ 3

(mod 4), and multiplies them to create n = p ∗ q. A sequence of pseudorandom num-
bers is created by repeatedly squaring a random seed and reducing it modulo n. BBS
can create random bits by taking the parity bit of each term in this sequence.

This thesis proposes two modifications to the original BBS PRNG. First, this thesis
generates random numbers by repeated cubing, instead of squaring. Second, this
thesis attempts to speed up bit generation by taking more than the parity bit per
iteration. Both modifications proposed in this thesis are tested by National Institute
of Standards and Technology (NIST) tests for randomness and then compared to the
original BBS PRNG.

Data from this thesis suggests that the cubic generator performs just as well as the
original. In addition, data gathered in this thesis suggests that bit generation can be
significantly increased by taking more than the parity bit, while retaining a sufficient
degree of statistical randomness.

Additionally this thesis proposes a new public key cryptosystem based upon the cubic
generator.
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CHAPTER 1:
Introduction

Cryptography is a field spread between mathematics and computer science focused on
secrecy and security of communications. Cryptographers attempt to fill the demand
for secrecy in a very difficult and dynamic environment. An important ingredient
in the encryption process is a pseudorandom number generator (PRNG). This thesis
will focus on a particular PRNG, the Blum-Blum-Shub (BBS) generator. This thesis
will substitute the quadratic generator used in BBS with a similar cubic generator.
National Institute for Standards and Technology (NIST) tests for randomness will be
used to evaluate the cubic generator. Additionally, this thesis seeks to improve the
efficiency of the cubic generator by increasing the number of bits taken per iteration
and again testing these sequences for randomness. Previous research has shown that
given a modulus of size n, we can take up to log(log(n)) bits per iteration and guar-
antee statistical randomness [1]. This thesis will attempt to take the cubic generator
beyond that bound. Data gathered in this thesis research suggests that the cubic gen-
erator performs just as well as the quadratic generator in NIST testing. It is worth
noting, as the data suggests, that even when taking more than log(log(n)) bits, the
sequences still pass NIST tests over 90 percent of the time.

1.1 Motivation
BBS is probabilistically secure, making it an excellent control group for an experi-
ment [2]. Using BBS as a control, we investigate modifications and see how well they
perform. This type of approach has been done previously on RSA. Hansen, Larsen,
and Olsen [3] of the University of Copenhagen compare decryption times in variants
of RSA on mobile phones. These variants include (Chinese Remainder Theorem)
CRT-RSA, multi-prime RSA, multi-power RSA, rebalanced RSA, and R-prime RSA.
All of these variations deviate from RSA with a purpose of improving the original,
or simply having an alternative. This thesis will attempt to do the same with cubic
BBS in hopes of improvement.

A great deal of research has been done on the quadratic generator. In particular,
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research has been done on how quadratic residues behave. This is critical to under-
standing BBS. However, thus far little research has been carried out on cubic residues.
While quadratic residues follow some patterns, the cubic residues are more difficult
to fit into a discernible pattern, and this seems to be a source of randomness. Thus,
a pseudorandom number generator based purely on cubic residues shows promise.

Although it is considered to be cryptographically secure, BBS is relatively slow com-
pared to other stream ciphers. While substituting the quadratic generator with a
cubic generator could slow down bit generation further, we may be able to improve
speed by taking more bits per iteration. By testing the bounds of log(log(n)) bits per
iteration, this thesis will propose a faster alternative, which retains randomness. In
addition, we propose a new cryptosystem based upon our modification of the gener-
ator.

1.2 Background
Before we delve into the inner workings of the BBS PRNG, it is important to un-
derstand how pseudorandom number generators are relevant to cryptography. This
section briefly highlights cryptographic goals and history to emphasize the applica-
tion of this study. It then defines a standard for perfect secrecy as an ideal to strive
for. Finally, it hones in on the time and resource issues of using random number
generators (RNG), which leads to the need for PRNGs.

1.2.1 Cryptographic Goals
Cryptography seeks to establish three goals:

1. Confidentiality: The method of encryption must be strong enough that, given
an encrypted message, an adversary has no understanding of the underlying
meaning.

2. Integrity: The original message must reach its destination unaltered, and if it
has been altered, the recipient will know. In addition, integrity means that the
authenticity of the sender is proven to the recipient.

3. Availability: The message can be transmitted in a timely fashion.
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1.2.2 Cryptographic Methods

One of the world’s most renowned cryptographers, Claude Shannon, laid out three
methods to send confidential messages:

1. Steganography: The message is hidden in plain view, but obscured.
2. Privacy Systems: Special equipment is required to encrypt or decrypt messages.
3. True Secrecy: The system of transmission is known, as well as the method of

encryption, but the message cannot be seen without a key [4].

Although cryptography has become a staple of modern communications, it is much
older than the computer or the Internet. History is full of examples where messages
needed to be sent secretly. Yet, methods that were used in the past are no longer
secure today. For example, when the ancient Greeks wanted to send a private message,
they wrote it on the bald head of a slave. Once the slave’s hair grew back he would
journey to the recipient. Once the slave arrived, a shave of the head revealed the
message [5]. This method is an example of steganography. The message is written in
plaintext, but the system of transmission is hidden. While this system is quite slow
and infeasible today, it shows that secrecy has been necessary for hundreds of years.

Modern cryptography deals with large-scale communication over open channels such
as the Internet. Thus, Shannon’s third principle of True Secrecy is the only method
of encryption used today.

One of the first examples of a True Secrecy cipher was used in Rome eons ago.
Rather than rely on the slave to reach his destination safely, Julius Caesar used a
new cipher, currently known as the Caesar cipher. This simple cipher is one of the
first demonstrations of basic mathematics being implemented in cryptography. The
cipher shifts the letters of the alphabet over three places. To implement this quickly,
let the English letters be represented by the numbers 0 through 25. Let M represent
a plaintext letter in a message. Let C represent the ciphertext letter corresponding
to M . Then each letter undergoes the mathematical operation:

C ≡M + 3 (mod 26) (1.1)
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Thus, the message "ready the troops" translates to "UHDGB WKH WURRSV."

The Caesar cipher follows Shannon’s third method of cryptography, because one
cannot understand the ciphertext unless one knows that the key is to shift the letters
three places to the right. Yet, this cipher is quite lacking, and only worked well in 100
BC when most people could not even read the plaintext. From this ciphertext it is
obvious that the plaintext is three words long, and letters that repeat in the plaintext
will repeat in the ciphertext. This is a clear problem. In addition, if one understood
the system was simply to shift the alphabet, it would be easy to check all 25 possible
(nontrivial) shifts.

1.2.3 Perfect Secrecy
Every cryptosystem that uses Shannon’s True Secrecy method has a key. An adver-
sary may try to guess this key. If an adversary does not have a plaintext/ciphertext
pair, guessing can be difficult. Yet, if an adversary can obtain these pairs, they can
analyze the encryption and look for patterns, as well as do analysis on the frequency
of commonly used letters. However, this is only possible if keys are reused or repeated.
These flaws motivate the idea of perfect secrecy.

Definition 1.2.1 Perfect Secrecy: Let H(K) be the probability that an adversary is
able to guess the key of a message without a plaintext/ciphertext pair. Let H(K|C) be
the probability that an adversary is able to guess the key given an unlimited amount
of plaintext/ciphertext pairs to analyze. A cryptosystem is considered perfectly secure
if H(K) = H(K|C) [4].

Such a system would solve the problem of secrecy. To begin designing such a system, it
helps to understand how a message is represented. We cannot perform mathematical
operations easily on letters, thus we need a system that changes letters into numbers
that a computer can operate on. Yet we must make sure that the system we use
is uniquely decipherable. We call this coding theory. One simple example of this
encoding technique is ASCII. Figure 1.1 shows a simple conversion table of letters
and numbers into binary using ASCII [6].
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Figure 1.1: ASCII Code Chart

Now referring to the previous example, the ASCII mes-
sage "ready the troops" can be represented in binary as
01010010011001010110000101100100011110010010000001110100011010000110010100
10000001010100011100100110111101101111011100000111001100001010.

If we wanted to encrypt this message so that an adversary did not know that we
were indeed readying the troops, we would have to do some operation on this string
of numbers. To utilize the Caesar cipher, simply add in binary "11" to each ASCII
character, since "11" is the binary representation of the decimal number three. This is
equivalent to adding "11" to each string of eight binary numbers. Thus, the change in
format from letters to binary does not change the way we encrypt. It simply changes
the way we represent our characters, putting them into a format that a computer can
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operate on.

Rather than use the Caesar cipher, which is rather trivial, a better encryption would
be what we call a one-time pad. A one-time pad requires a key, which consists of bits
that are equal in length to the message. The encryption is simply adding plaintext
to the key, reducing the result modulo 2. This operation is the “exclusive or,” or the
XOR, as it is commonly called.

With these tools, we can finally give a theoretically perfectly secure cipher. A one-
time pad, where the key that is used consists of perfectly random bits equal to the
length of the message, will be perfectly secure. This perfect secrecy is due to the
fact that if the key is entirely random and unpredictable, it holds no patterns. Since
its length matches the length of the message, we know it never repeats. Without
knowledge of the key, any plaintext could be possible.

If we want to utilize random bits for encryption, we need a process for creating bits
that we can rely on. The question that arises: Is it possible to generate truly random
bits in a deterministic fashion? Much research has been done in this area. These
generators can be implemented by chaotic processes that are viewed to be random.
Stojanovski and Kocarev write a thorough analysis on this topic, using examples of
generators that are implemented by “measuring radioactive decay, integrating dark
current from a metal insulator semiconductor capacitor, detecting locations of photo-
events, and sampling a stable high-frequency oscillator with an unstable low-frequency
clock” [7]. Also, generators have been created that utilize minute differences in hard-
ware processes, that are considered complex and hard to control. An example being
Physical Unclonable Functions, which measures responses in silicon physical systems.
These are thought to have minute differences that are impossible to predict ahead of
time [8]. All of these are examples of random number generators that are thought to
be truly random and unpredictable, but for the purposes of this thesis, we will not
focus on these methods and turn our attention instead to deterministic generators,
namely, pseudorandom number generators.
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1.2.4 Pseudorandom Numbers
Pseudorandom number generators are a method of generating bits that can be used for
encryption with a deterministic mathematical process. Intuitively, one should know
that this will not be enough to satisfy our guidelines for a perfectly secure cipher.
Yet, it is worth noting that our assumptions about our adversary in perfect secrecy
are not realistic. Thus, pseudorandom bits may function in the same way as truly
random bits, assuming an adversary does not have infinite time, infinite resources,
and infinite plaintext/ciphertext pairs to work with.

Since we have mentioned that there are methods for generating truly random bits, a
valid question is, why would we want to use pseudorandom bits instead? Mainly, a
PRNG can be implemented much quicker and at less cost.

The security of a PRNG is dependent upon its use of computationally “hard” math-
ematical problems. For instance, given a very large number, n, the product of two
primes, p and q, it is computationally hard to factor n without knowing p or q. This
is the foundation of RSA. Another such problem is the discrete logarithm problem,
which provides security for Diffie-Hellman key exchange, among other cryptographic
tools.

In BBS the security is based on the difficulty of the quadratic residuosity problem
as well as the difficulty to factor large numbers n, made up of Blum primes (defined
below).

7
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CHAPTER 2:
Blum-Blum-Shub

Chapter 2 explains how pseudorandom sequences are generated using the original
BBS as well as the cubic modification proposed in this paper. Second, this chapter
introduces a public key cryptosystem based upon BBS as well as the mathematics
behind this system. Finally, it presents a new public key cryptosystem based upon
the modified cubic generator.

2.1 BBS Generator and Modification
In BBS, random bits are created by

1. Taking a random seed x0.
2. Taking 2 large prime numbers p and q such that:

• p, q ≡ 3 (mod 4) (Such a prime is called a Blum prime)
• n = p ∗ q

3. Creating a sequence of numbers by squaring xi:
• xi+1 ≡ x2i (mod n)

4. Taking the parity of each element in the sequence to create a binary string:
• yi ≡ xi (mod 2)

This binary string provides our pseudorandom bits, which will be used for encryption.
The two modifications proposed in this thesis are quite simple.

1. Modification 1: Sequences are created by cubing xi.
• xi+1 ≡ x3i (mod n)

2. Modification 2: We take the last 10, 50, and 100 bits of each xi to create a binary
string (for our considered size of the modulus). Additionally, we concatenate the
binary representations of each xi to create a (potential pseudorandom) binary
string.

9



2.2 BBS Public Key Cryptosystem

Chapter 1 explained the need for random numbers and pseudorandom number gener-
ators, as well as the basics of a one-time pad. BBS could be used as a one-time pad,
but that is not its primary purpose. As we already mentioned, a one-time pad is a
private key cipher, requiring both the sender and the recipient to know a pre-shared
secret key in order to encrypt and decrypt. One the other hand, the BBS crytosystem
is a public key crytosystem, where both parties need not know the key in order to
communicate securely. This section will explain how communication takes place with
BBS in a public key environment.

Consider Alice attempting to send Bob an encrypted message of length m using BBS.
Let the plaintext message be denoted by M = {m1,m2, ...,mm} in binary. The
crytosystem is a simple four step process, and will enable Alice to send a secure
message to Bob.

1. Bob chooses two large primes p, q (which he keeps secret) and publishes their
product, the modulus n = p · q.

2. By using the BBS PRNG with modulus n, Alice will then use a random seed x0
to create a random sequence of m numbers by squaring each term and reducing
it modulo n to create the next number in the sequence. Let this sequence be
X = {x1, x2, ..., xm}. Alice then takes the parity of each element of X to create
a bit string, which we will call the key: K = {k1, k2, ..., km}.

3. Alice XORs her message with the key to create a ciphertext, C = {c1, c2, ..., cm}.
M ⊕K = C. Alice sends C to Bob, along with xm+1.

4. Bob repeatedly takes the square root of xm+1 to recover {xm, xm−1, ..., x1}. After
Bob recovers this sequence, he can easily recover K and compute C ⊕K =M .

The security of BBS relies upon the fact that step four of this process is impossible
without knowing the factors of n. The next section will explain the mathematics
behind this security.
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2.3 Number Theoretic Background
This section focuses on the theorems and mathematics that secure BBS. Pascal Junod,
a well-known cryptographer, writes a summary of many key theorems in his paper on
BBS [9]. This thesis uses the relevant theorems and proofs he has written to provide
a base understanding of why BBS is secure, given that the factors of n are kept secret.

2.3.1 Quadratic Residues and the Legendre Symbol
First, we define the concept of a quadratic residue found in [9].

Definition 2.3.1 For n ∈ N, Then a ∈ Z∗
n, is called a quadratic residue modulo n,

if there exists b ∈ Z∗
n such that

a ≡ b2 (mod n)

The set of quadratic residues modulo n is denoted by QRn. Furthermore, the set of
non quadratic residues modulo n is denoted by QNRn.

To make matters easier we define the Legendre Symbol as follows from [9]:

Definition 2.3.2 Let p be an odd prime, and a ∈ Z∗
p. The Legendre symbol is

defined by

(a
p

)
=


0 if p|a

1 if a ∈ QRp

−1 if a ∈ QNRp

Theorem 2.3.1 (commonly known as Euler’s Theorem) from [9] will allow us to easily
compute the Legendre symbol.

Theorem 2.3.1 We have
(a
p

)
= a

p−1
2 (mod p).

Proof.

11



Let a ∈ QRp. Then, a ≡ b2 (mod p) for some b ∈ Z∗
p. By Fermat’s Little Theorem,

it follows that
a

p−1
2 ≡ (b2)

p−1
2 ≡ bp−1 ≡ 1 (mod p). (2.1)

Next, assume a ∈ QNRp. Since p is prime, we can find g such that g is a generator
of Z∗

p, that is, Z∗
p = {1, g, g2, . . . , gp−1} = 〈g〉.

Since g is a generator, repeated multiplication will generate the entire structure, Z∗
p.

Thus our a = gt, for some odd t. If t is even, then t = 2s for some s ∈ Z∗
p. Thus

gt = g2s = (gs)2.

Then for odd t = 2s+ 1,

a
p−1
2 ≡ gt

p−1
2 ≡ g2s

p−1
2 · g

p−1
2 (mod p). (2.2)

By (2.1) we know a quadratic residue raised to the power p−1
2

reduces to 1, so we are
left with

g
p−1
2 (mod p).

Note that g(
p−1
2 )2 ≡ 1 (mod p), by Fermat’s Little Theorem. Then it is clear that

g
p−1
2 is either 1 or −1. Finally, since g is a generator of the group, its order is precisely

p− 1, and so, g
p−1
2 = −1 [9]. 2

These theorems are significant, as they provide a grounds for the difficulty of the
Quadratic Residuosity Problem, which is key to the security of BBS. By Theorem 2.3.1
we also infer that given a prime finite field Z∗

p, half the elements will be quadratic
residues, half will be quadratic non residues. As proof, consider a generator, g, of the
field Z∗

p. As stated in the proof of Theorem 2.3.1, gt will be a quadratic residue for all
even t. There are exactly p−1

2
such t’s that are even. Thus, |QRp| = |QNRp| = p−1

2
[9].

Example 2.3.1 Let p = 7. By squaring each element in Z∗
7 we can compile a list of

the quadratic residues and non residues:
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1. {1, 2, 4} ∈ QR7.
2. {3, 5, 6} ∈ QNR7.

As expected, half the elements are quadratic residues and half are non-residues.

Example 2.3.2 Is 2 a quadratic residue in Z∗
29?

If we have a p for which we do not want to list out the squares of each element, we
can use Theorem 2.3.1 to calculate the value of the Legendre symbol:(

2

29

)
≡ 2

29−1
2 =≡ 16384 ≡ 28 ≡ −1 (mod 29)

Thus 2 is a quadratic non residue in Z∗
29.

2.3.2 Jacobi Symbol and Blum primes
Quadratic residues of Z∗

p where p is prime is important, but recall that the BBS
algorithm does not use Z∗

p to generate sequences. Rather, BBS uses Z∗
n, where n = p·q

and p, q are Blum primes.

This subsection will explain what happens to our quadratic residuosity theorems
when we extend our environment to something other than Z∗

p, as well as explain the
significance of Blum primes.

Definition 2.3.3 Jacobi Symbol
The Jacobi symbol is used to evaluate the Legendre function

(a
n

)
, where n is not nec-

essarily prime. To cite Junod again, let n be an odd integer with prime factorization
n =

∏
i

(pi)
ei . Then the Jacobi symbol

(a
n

)
is defined by

(a
n

)
=
∏
i

(a
pi

)
ei (2.3)

Junod goes on to prove that half the elements of Z∗
n have Jacobi symbol +1 and half

have Jacobi Symbol -1. These sets are denoted Z∗
n(+1) and Z∗

n(−1). None of the
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elements of Z∗
n(−1) are quadratic residues, and exactly half the elements of Z∗

n(+1)

are quadratic residues [9].

Next we recall once again the definition of a Blum prime.

Definition 2.3.4 A prime number p where p ≡ 3 (mod 4) is called a Blum prime.

The following theorem from [9] shows the importance of Blum primes.

Theorem 2.3.2 We have that

−1 ∈ QNRp if and only if p is a Blum prime.

Proof. By Theorem 2.3.1 (
−1
p

)
≡ −1

p−1
2 (mod p) (2.4)

Note that p is odd by assumption, so p must be congruent to 1 or 3 modulo 4. If

p ≡ 1 (mod 4), then
(
−1
p

)
= 1. If p ≡ 3 (mod 4), then

(
−1
p

)
= −1. 2

If −1 were a quadratic residue then a BBS sequence could contain xi = −1. For any
n-bit long BBS sequence, if any xi = −1 then the key K would have the property
{ki+1, ki+2, . . . , kn} = 1. Obviously a key with this property will not be considered
random, so Blum primes are a necessity.

2.3.3 Square Roots and the Chinese Remainder Theorem
Recall from Section 2.2 that in step four of the BBS cryptosystem, Bob was able to
compute the square roots of xm+1, which allowed him to re-create the key, K. This
subsection will explain how this step takes place.

In the BBS cryptosystem, the sequence X is generated by squaring each term so that
xi+1 ≡ xi

2 (mod n). Since BBS sends xm+1 unencrypted, if one could determine the
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square roots, they could recover the key. Jeremy Booher gives a polynomial-time
algorithm for determining square roots in Blum prime fields, Z∗

p:

If a ∈ QRp, then a square root is given by a
p−1
4 [10].

For this reason, we do not use Z∗
p for BBS, as it would be easy for anyone to recover

the key. However, when using Z∗
n, where n is the product of two Blum primes, it

is not as easy to determine square roots. In a prime field Z∗
p there are obviously

two distinct square roots for every element. Junod goes on to show that if a ∈ QRn

there are exactly 2k distinct square roots of a, where k is the number of distinct
prime factors of n [9]. In BBS, n is made up of two distinct prime factors, so each
a ∈ QRn will have four distinct square roots. Of these square roots, only one will
be a quadratic residue of n. If one knows the factors of the modulus n, the Chinese
Remainder Theorem (CRT) helps in computing the square roots of each term. This
is done by using the CRT to solve the system:xm ≡ xm+1

p+1
4 (mod p)

xm ≡ xm+1
q+1
4 (mod q).

The result of this system allows the recipient to calculate the proper square root with
certainty. Thus, the factors of the modulus are necessary in order to recover the
proper sequence, and the correct sequence is required to recover the key. For a full
proof of security, see [9] and [2].

2.4 A New Public Key Cryptosystem Based upon
the Cubic Generator

While the BBS cryptosystem is well defined above, we found that there has been no
previous research done on a cubic cryptosystem. This section addresses how the cubic
modification proposed in this thesis can be implemented as a public key cryptosystem.

Previous research from [11] gives algorithms for computing cube roots in the finite
field Z∗

p , where p is prime. In addition, this research extends the algorithm to the
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field Z∗
n, where n is a composite number, by using the Chinese Remainder Theorem.

By using the CRT, our problem of finding cube roots in Z∗
n becomes easier, as we must

simply determine cube roots in Z∗
p, for all p that make up the prime factorization of

n. For the cubic generator proposed in this thesis, n consists of two prime factors,
p ∗ q. From [11], if we assume that p ≡ −1 (mod 3), then the cube root can be found
as follows:

3
√
a ≡ a

2p−1
3 . (2.5)

Using this equation along with the CRT, it is possible to solve the following system
and determine the cube root for the modulus n: 3

√
a ≡ a

2p−1
3 (mod p)

3
√
a ≡ a

2q−1
3 (mod q).

If we use our example of Alice sending Bob a message again, Alice can generate a
sequence X = {x0, x1, x2, . . . , xm} with the cubic generator. She uses this sequence
to generate her key, K = {k0, k1, k2, . . . , km}. She once again sends Bob the cipher
text, C = {c0, c1, c2, . . . , cm}, along with xm+1. Using equation (2.5), Bob can solve
the system given above to determine the cubic root of xm+1 and recover the entire
sequence, X.

It is worth noting that it is necessary for Bob to choose his modulus n, wisely. The
restrictions we place upon this cryptosystem are that n = p · q, wherep, q ≡ 3 (mod 4)

p, q ≡ −1 (mod 3).

This can be simplified again using the CRT to yield

p, q ≡ 11 (mod 12).
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CHAPTER 3:
Methodology

This chapter explains the procedure used to generate and test pseudorandom se-
quences. Next, it lays out the experiment that is performed in this thesis. Finally,
this chapter gives a brief, yet useful, summary of each NIST test that is used.

3.1 Generating and Testing Sequences
This thesis uses a Python script to generate and test sequences. The source code for
the codes referenced below can all be found in the Appendix. The method used is as
follows:

• Generate Blum Prime Numbers p and q with Code 1.
• Specify a number of sequences, a length of each sequence, and how many bits

per iteration. Generate the sequence and record it as a string with Code 2.
• Feed the string into each of the NIST randomness tests given in Code 3.

The sequences generated in this thesis will be roughly one million bits in length.

3.2 Experiment Procedure
As stated previously, the purpose of this thesis is twofold. First, we focus on imple-
menting a cubic generator instead of the quadratic generator found in the original
BBS. Second, we focus on the number of bits that we can take per iteration in order
to improve the efficiency and test the bounds given by [1].

3.2.1 Research Objectives
The original BBS simply takes the parity bit during each iteration, which is prob-
abilistically secure [2]. By using Vazirani and Vazirani’s proof, we can safely take
up to log(log(n)) bits and guarantee randomness (with high probability) [1]. While
Vazirani and Vazirani guaranteed randomness up to that bound, it is an interesting
idea to push these limits. In his own work, he limits the decryption to a probabilistic
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polynomial-time algorithm, and shows that with these assumptions the bound could
be pushed up to

√
n. This thesis uses a modulus of size n = 2512, thus log(log(n)) = 9.

We will test this bound on the original quadratic generator used in BBS as well as the
modified cubic generator by taking the last 10, 50, and even 100 bits per iteration.
Additionally, we test the actual sequence X = {x0, x1, x2, . . . , xm} for randomness.
The actual sequence means the binary representation of each xi in the iteration. It
is worth noting that some iterations will not give the desired amount of bits. For
example, when generating a sequence from the last 100 bits per iteration, there can
exist a number, xi, within the sequence, X that will not be 100 bits in length. When
this happens, the program simply takes the entire binary number, xi. We could have
used a padding technique, but we chose this simple approach for convenience.

3.3 Testing Sequences
This section focuses on explaining the NIST tests for randomness that are used in
this thesis. They are statistical tests, so they do not determine whether a sequence
is or is not random, but rather, they determine the statistical confidence we have in
the randomness of a sequence. The details on the tests will not be exhaustive, since
the statistics used to derive them are beyond the scope of this thesis. However, an
understanding of what each test does and what “success” looks like is necessary.

The following tests have been written on extensively in Rukhin’s et al. paper “A
Statistical Test Suite for Random and Pseudorandom Number Generators for Cryp-
tographic Applications” [12]. For all of the tests, the null hypothesis, H0, will be the
assumption that the sequence is random. The alternate hypothesis, Ha, will be that
the sequence is not random. Each test yields a p-value, which is used to determine
whether we reject, or accept the null hypothesis. Rukhin et al. recommends using
α = 0.01. Thus, if the p-value is below 0.01, we reject the null hypothesis [12].

3.3.1 Monobit Frequency Test
The Monobit Frequency Test is the simplest of all the statistical tests. The purpose of
the test is to determine if there are an equal (or approximately equal, since the length
may be odd) number of 0’s and 1’s in a given sequence, Sn. This is done by creating
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a new sequence, by converting the bit b into the integer 2b − 1 (this is often called
the sign-sequence, or its complement, of the original one), that is, 0’s are mapped
into −1 and 1’s are left alone. Next, the test takes the sum of each element in the
sequence, and computes the absolute value, |Sn|. After computing the test statistic,
the test uses the complementary error function to determine the p-value.

It is worth noting that while a sequence may pass this test, that does not mean the
sequence is random. The Monobit Frequency Test can be thought of as the first step
in a refining process. It simply acts as a filter, which rules out the sequences that are
quite clearly not random.

3.3.2 Block Frequency Test
The Block Frequency Test is a more specialized version of the Monobit Frequency
Test. Instead of testing the entire sequence to find the proportion of 1’s and 0’s, the
block frequency tests the proportion of 1’s and 0’s within a certain block size. The
assumption of the test is that in an M bit block size, there will be approximately
M/2 1’s andM/2 0’s. Note that if the block size is one, the test is nothing more than
the Monobit test [12].

The purpose of the test is to reject sequences that appear to be random due to an
equal proportion of 1’s and 0’s, but are not random due to the distribution of those
numbers within the sequence. For example, the 10 bit sequence: 0000011111 passes
the Monobit frequency test, but fails the block frequency test, as it is clearly not
random.

3.3.3 Runs Test
A run is defined as a series of either 1’s or 0’s in a row. The purpose of the test is
to determine if the length of runs in the sequence is an expected value for a random
sequence.

The test is done by computing a test statistic Vn(obs) =
n−1∑
k=1

r(k) + 1, where r(k) = 0

if εk = εk+1 and r(k) = 1, otherwise [12].
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Put simply, each bit is compared to the next bit in the sequence to check if they are
the same or not, and then given a zero if they are the same, or a one if they differ.
Taking the summation gives us a measurement on the amount of runs in the sequence.

The Vn(obs) value is then put into the error function to determine the p-value.

3.3.4 Longest Runs Test
The Longest Runs Test measures the longest run within blocks of M -bits. The test
determines if the length of this run is consistent with a value that would be expected
of a random sequence.

The NIST standard uses three common block sizes for this test, M = 8, 128, and
10, 000.

The test divides the sequence into blocks, and looks for the longest run of ones within
the blocks. The test then computes the test statistic χ2(obs), which is used to compute
the p-value [12].

3.3.5 Spectral Test
The Spectral Test measures the peak heights of the Discrete Fourier Transform of
the sequence and analyzes it for repetition and periodic behavior. Theoretically, in a
random sequence, 95 percent of the values will not exceed T , where T is given by the
equation T =

√
log(1/0.05)n.

From this we compare the difference between the observed values and our theoretical
bound, and derive d. This value is used in the error function to create our p-value.

3.3.6 Non-overlapping Template Matching Test
The Non-overlapping Template Matching Test divides the sequence into blocks. It
then checks for the occurrence of a pre-specified, non-repeating template within these
blocks. The test uses a sliding window equal to the length of the template. The
purpose is to see if a particular template string occurs too often or not frequently
enough within a sequence.
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Once again the number of observed matches is compared to the theoretical number
of matches in order to produce a test statistic, χ2(obs), which is used to compute the
p-value [12].

3.3.7 Overlapping Template Matching Test
The Overlapping Template Matching Test uses the same procedure as the Non-
overlapping Template Matching Test. However, when a match to the template is
found, then the window slides one bit over and continues its search [12].

3.3.8 Maurer’s Universal Statistical Test
The Maurer’s Universal Statistical Test focuses on determining whether the sequence
can be compressed without significant loss of information. If a sequence is easily
compressed, we determine the sequence is non random. The testing procedure is quite
involved and an explanation is beyond the scope of this thesis. For more information
on this test, we recommend the reader refer to [12].

3.3.9 Linear Complexity Test
Many pseudorandom sequences used in light-weight ciphers today are generated by
Linear Feedback Shift Registers (LFSR). LFSR’s can generate long strings of pseudo-
random sequence quickly. The Linear Complexity Test is a measure of the complexity
of such pseudorandom sequences.

The test divides the sequence into blocks, and uses the Berlekamp-Massey algorithm
to determine the Linear Complexity of each block and compares it to a theoretical
mean under the assumption of randomness [12].

3.3.10 Approximate Entropy Test
The Approximate Entropy test records the bits of overlapping blocks of the sequence
of size M . Given the fact that there are 2M possible sequences for a block of size M ,
the test creates a probability distribution of these recorded blocks. The purpose of the
test is to calculate the approximate entropy by comparing these block distributions
to what an acceptable value would be for a random sequences [12].
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3.3.11 Cumulative Sums Test
The purpose of the Cumulative Sums Test is to determine the greatest excursion of
random walks within a sequence. A random walk can be defined in terms of a graph.
First, this test changes all zeroes within the tested sequence to −1. Consider a graph
formed by taking the partial sums of this sequence. This graph will begin at the
point 0 and at each step along the x-axis will either move up or down one unit based
on whether the next term of the sequence is a one or a zero. The excursion of the
graph is defined as the greatest distance such a graph strays from zero. In a random
sequence the excursion of a random walk will be close to zero. If a sequence is non
random however, the excursion will be large [12].

3.3.12 Random Excursions Test
Similar to the Cumulative Sums Test the Random Excursions Test is a measure of
the excursions of random walks. It is a series of eight tests with eight results for each
test. The purpose is to determine if there is a deviation from the expected value of a
random sequence [12].

3.3.13 Random Excursions Variant Test
Similar to the Random Excursions Test the Random Excursions Variant Test is used
to test the number of times a particular state is seen in a random walk. The test is
a series of 18 tests, and each produces a specific p-value. The results determine if
the number of deviations in states in a random walk is consistent with the expected
value [12].
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CHAPTER 4:
Results and Analysis

This chapter will focus on the results of the NIST tests, and an analysis of the data.
The chapter will give data comparing the quadratic generator to cubic generator. It
will also show results for the NIST tests on sequences that were generated by taking
more than the last log(log(n)) bits from each iteration.

4.1 Results and Analysis
As explained earlier, this thesis focuses on two research objectives. First, we attempt
to discover how well the cubic generator performs. Second, we attempt to discover
how well sequences that take more than the parity bit perform. Below, data is shown
for five cubic modifications, with quadratic data as a comparison. Data is gathered
from a sample size of 200 sequences, each roughly one million bits in length. Each
section below will give the success rates per NIST test, as well as a success rate per
sequence.

4.1.1 Parity Bit Samples
Below, we show results for cubic and quadratic sequences that were generated by
taking the parity bit each iteration.

Figure 4.1: Parity Bit NIST Test Results
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Overall, the success rate per NIST test was above 95 percent for both the cubic and
quadratic generator. Recall that the random excursion test and random excursion
variant test are multiple part tests, so each of the results are shown above.

Looking at success rate per sequence rather than per test is a stricter standard. The
following graphs show the percentage of sequences which passed every NIST test,
comparing the quadratic generator to the cubic one.

(a) Quadratic (b) Cubic

Figure 4.2: Quadratic versus Cubic Parity Sequence Results

This allows us to see that while 95 percent of the parity sequences may pass a certain
NIST test, the number of sequences that pass every NIST test is lower. In this sample
69 percent of the parity sequences generated with both quadratic and cubic generators
pass every single test. The results seem to show no discernible difference between the
original quadratic generator and the modified cubic generator.

4.1.2 Last 10 Bits per Iteration
Below, we show results for cubic and quadratic sequences that were generated by
taking the last ten bits per iteration. Recall that our theoretical bound for the
number of bits that can safely be taken per iteration is log(log(n)) where n is the size
of the modulus and the log is base 2. Our modulus size is 512 bits, so log(log(512) is
roughly 9. Thus, our sequences from this point on all exceed the bound.

The following graph shows the success rate for each NIST test.
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Figure 4.3: Last 10 Bit NIST Test Results

The success rate per test is above 95 percent for all NIST tests that were used in this
experiment, with little noticeable difference between the two generators.

The graphs below compare the success rate per sequence for both quadratic and cubic
sequences generated with the last ten bits.

(a) Quadratic (b) Cubic

Figure 4.4: Quadratic versus Cubic Last 10 Bit Sequence Results

Quadratic sequences generated by taking the last ten bits per iteration tend to perform
slightly better than the modified BBS generator. Similar cubic sequences remain
nearly unchanged from the parity generator.
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4.1.3 Last 50 Bits per Iteration
Below, we show results for cubic and quadratic sequences that were generated by
taking the last 50 bits per iteration.

Figure 4.5: Last 50 Bit NIST Test Results

The results once again show all tests passed at above a 95 percent success rate. The
graphs below again compare success rate per sequence.

(a) Quadratic (b) Cubic

Figure 4.6: Quadratic versus Cubic Last 50 Bit Sequence Results

The two generators have similar results. It is interesting to note that we are far
beyond the theoretical bound of 9, yet the percentage of sequences that pass all tests
has actually increased slightly.
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4.1.4 Last 100 Bits per Iteration
Below, we show results for cubic and quadratic sequences that were generated by
taking the last 100 bits per iteration.

Figure 4.7: Last 100 Bit NIST Test Results

Even by increasing the generators to 100 bits per iteration the NIST tests still pass
over 95 percent of the time. The following graphs compare success rate per sequence.

(a) Quadratic (b) Cubic

Figure 4.8: Quadratic versus Cubic Last 100 Bit Sequence Results

Data suggests that both of these generators perform better than the parity generator
by around 10 percent. However, it is roughly 100 times faster to generate sequences
in this way than by using the parity generator.
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4.1.5 Full Sequence Generator
Up until this point, data suggests that sequences performed well beyond the
log(log(n)) bound. The following sequences maximize the number of bits that can
be taken per iteration by simply taking the binary representation of the sequence
number.

Figure 4.9: Full Sequence NIST Test Results

All NIST tests perform similarly to the previous data, with the exception of the 
cumulative sums test, which has a 89 percent success rate for the quadratic generator. 
The following graphs compare the success rate per sequence.

(a) Quadratic (b) Cubic

Figure 4.10: Quadratic versus Cubic Full Bit Sequence Results

Data suggests that the cubic generator performs 6 percent better than the quadratic.
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Surprisingly, the cubic generator also performs better than the original parity gener-
ator.
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CHAPTER 5:
Conclusion and Future Work

This thesis proposes a cubic modification of BBS, a modification to the number
of bits taken per iteration, and gives a new public key cryptosystem for the cubic
modification.

Data gathered through NIST testing suggests that the cubic generator performs just
as well as the quadratic generator. In addition, this research suggests that quadratic
and cubic sequences generated by taking greater than log(log(n)) bits per iteration
retain randomness according to NIST tests. One major issue with BBS is that bit
generation takes a long time compared to other PRNGs; however, the data from this
thesis could speed up bit generation significantly.

While the data gathered in this thesis suggests that the modifications to BBS retain
randomness, many opportunities for future research in this area remain. The data
gathered in this thesis is statistical, and no formal proof of security is given to the
cubic generator. Areas of future work may include research into cubic residues and
roots to complement [11]. Additionally, research could be done on the bound given
in [1] to determine the theoretic safety of extracting large numbers of bits per iteration.
Finally, this thesis provides a new public key cryptosystem. However, future research
could be done on the computational feasibility of implementing such a system, as well
as a comparison of this system to other common cryptosystems.
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APPENDIX: Programming Codes

This Appendix contains the programming codes used to generate and test sequences.

Code 1: Generating Large Primes

The following code is used to generate prime numbers which will be used as the
p and q for our BBS generator. The code is taken from an open source website,
4dsolution.net [13].

import random

def bigppr(bits=256):

"""

Randomly generate a probable prime with a given

number of hex digits

"""

candidate = random.getrandbits(bits) | 1 # Ensure odd

prob = 0

while 1:

prob=pptest(candidate)

if prob>0:

return candidate

candidate += 2

def pptest(n):

"""

Simple implementation of Miller-Rabin test for

determining probable primehood.

"""

if n<=1:

return 0
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# if any of the primes is a factor, we’re done

bases = [random.randrange(2,50000) for x in xrange(90)]

for b in bases:

if n%b==0:

return 0

tests,s = 0L,0

m = n-1

# turning (n-1) into (2**s) * m

while not m&1: # while m is even

m >>= 1

s += 1

for b in bases:

tests += 1

isprob = algP(m,s,b,n)

if not isprob:

break

if isprob:

return (1-(1./(4**tests)))

return 0

def algP(m,s,b,n):

"""

based on Algorithm P in Donald Knuth’s ’Art of

Computer Programming’ v.2 pg. 395

"""

y = pow(b,m,n)
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for j in xrange(s):

if (y==1 and j==0) or (y==n-1):

return 1

y = pow(y,2,n)

return 0

The code takes in the length of the prime number in bits. It then uses the Miller-
Rabin test to determine primehood. It will increment the number by two until it
finds one that passes the test. Once it passes, it returns this prime number.

Code 2: Main BBS

import csv

import random

import time

import numpy as np

randsequence = input("How many sequences?")

DesiredBits = input("How long do you want the bits sequence to be?")

divisor= input("How many of last n bits do you want to take

to make bit sequence?")

IterationsNeeded = DesiredBits/divisor #this gives you the desired

bits eg. if you want 1 million bits sequence,

and wanna take last 4 bits, algorithm

will divide the iterations into 250000

file1 = open( "Name of File for the result.csv", ’w’)

file1.write("Monobit,Blockfreq, Runstest, Spectraltest,

Nonoverlapping Template, Overlapping Template,

Cumulative Sums Test,Approximate Entropy, binarymatrixranktest,

Linear Complexity, Longest Run, Maurers Universal,
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Random Excursion1,2,3,4,5,6,7,8,

Random Excursion Variant1,2,3,4,5,6,7,8,9,10,

11,12,13,14,15,16,17,18,p,p1,q,q1,r,r1,xi, \n")

from PrimeGen import bigppr, pptest, algP

from randtest import monobitfrequencytest, blockfrequencytest, runstest,

spectraltest, nonoverlappingtemplatematchingtest,

overlappingtemplatematchingtest,cumultativesumstest,

aproximateentropytest, binarymatrixranktest,

linearcomplexitytest,longestrunones10000,

maurersuniversalstatistictest, randomexcursionstest,

randomexcursionsvarianttest

def rng():

global xi, yi

xi = (xi * xi) % n

bin (xi)

yi= bin(xi)[2:] #it eliminates the first two characters 0b...

zi = str (yi)

ai = str (zi[-divisor:])

return ai

for i in range(randsequence):

p = bigppr(256)

q = bigppr(256)

r = bigppr (256)

n = p*q*r

#n = p*q
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xi = bigppr (300)

output = ’’

result = ’’

for i in range(IterationsNeeded):

output += str(rng())

p1 = p%4 #Double check if Blum-prime

q1 = q%4 #Double check if Blum-prime

r1 = r%4 #Double check if Blum-prime

file1.write(str(monobitfrequencytest(output)) + ’,’ +

str(blockfrequencytest(output)) + ’,’ +

str(runstest(output)) + ’,’ + str(spectraltest(output))

+ ’,’ + str(nonoverlappingtemplatematchingtest(output))

+ ’,’ + str(overlappingtemplatematchingtest(output))

+ ’,’ + str(cumultativesumstest(output)) + ’,’ +

str(aproximateentropytest(output)) + ’,’ +

str(binarymatrixranktest(output)) + ’,’ +

str(linearcomplexitytest(output)) + ’,’ +

str(longestrunones10000(output)) + ’,’ +

str(maurersuniversalstatistictest(output)) + ’,’ +

str(randomexcursionstest(output)) + ’,’ +

str(randomexcursionsvarianttest(output))

+ ’,’ + str(p)+ ’,’+ str(p1)+ ’,’ + str(q) + ’,’+ str(q1)

+ ’,’ + str(r) + ’,’+ str(r1) + ’,’ + str(xi) + ’\n’)

file1.close()

#toc= time.clock()

#print (toc - tic)

print p
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print q

print xi

#print output

#print toc

import os

os.system(’say "Your test is done" ’)

This program was written by myself and a colleague in order to quickly and efficently
implement BBS and modifications to BBS. The user specifies the number of sequences
to generate, the length of the sequences, and how many bits to take per iteration.
The sequences are generated as a string, and immediately tested using Code 3. The
results are compiled in a CSV.

Code 3: NIST Tests

This program, written by Ilja Gerhardt [14], executes NIST tests on binary strings.

#!/usr/bin/env python

import numpy as np

import scipy.special as spc

import scipy.fftpack as sff

import scipy.stats as sst

def sumi(x): return 2 * x - 1

def su(x, y): return x + y

def sus(x): return (x - 0.5) ** 2

def sq(x): return int(x) ** 2

def logo(x): return x * np.log(x)

def pr(u, x):

if u == 0:

out=1.0 * np.exp(-x)

else:

out=1.0 * x * np.exp(2*-x) * (2**-u) * spc.hyp1f1(u + 1, 2, x)
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return out

def stringpart(binin, num):

blocks = [binin[xs * num:num + xs * num:] for xs in xrange(len(binin)

/ num)]

return blocks

def randgen(num):

’’’Spits out a stream of random numbers like ’1001001’

with the length num’’’

rn = open(’/dev/urandom’, ’r’)

random_chars = rn.read(num / 2)

stream = ’’

for char in random_chars:

c = ord(char)

for i in range(0, 2):

stream += str(c >> i & 1)

return stream

def monobitfrequencytest(binin):

ss = [int(el) for el in binin]

sc = map(sumi, ss)

sn = reduce(su, sc)

sobs = np.abs(sn) / np.sqrt(len(binin))

pval = spc.erfc(sobs / np.sqrt(2))

return pval

def blockfrequencytest(binin, nu=128):

ss = [int(el) for el in binin]

tt = [1.0 * sum(ss[xs * nu:nu + xs * nu:]) / nu for xs in

xrange(len(ss) / nu)]

uu = map(sus, tt)
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chisqr = 4 * nu * reduce(su, uu)

pval = spc.gammaincc(len(tt) / 2.0, chisqr / 2.0)

return pval

def runstest(binin):

ss = [int(el) for el in binin]

n = len(binin)

pi = 1.0 * reduce(su, ss) / n

vobs = len(binin.replace(’0’, ’ ’).split()) +

len(binin.replace(’1’ , ’ ’).split())

pval = spc.erfc(abs(vobs-2*n*pi*(1-pi)) / (2 * pi * (1 - pi)

* np.sqrt(2*n)))

return pval

def longestrunones8(binin):

m = 8

k = 3

pik = [0.2148, 0.3672, 0.2305, 0.1875]

blocks = [binin[xs*m:m+xs*m:] for xs in xrange(len(binin) / m)]

n = len(blocks)

counts1 = [xs+’01’ for xs in blocks] # append the string 01 to

guarantee the length of 1

counts = [xs.replace(’0’,’ ’).split() for xs in counts1] # split into

all parts

counts2 = [map(len, xx) for xx in counts]

counts4 = [(4 if xx > 4 else xx) for xx in map(max,counts2)]

freqs = [counts4.count(spi) for spi in [1, 2, 3, 4]]

chisqr1 = [(freqs[xx]-n*pik[xx])**2/(n*pik[xx]) for xx in xrange(4)]

chisqr = reduce(su, chisqr1)

pval = spc.gammaincc(k / 2.0, chisqr / 2.0)

return pval

def longestrunones128(binin): # not well tested yet
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if len(binin) > 128:

m = 128

k = 5

n = len(binin)

pik = [ 0.1174, 0.2430, 0.2493, 0.1752, 0.1027, 0.1124 ]

blocks = [binin[xs * m:m + xs * m:] for xs in

xrange(len(binin) / m)]

n = len(blocks)

counts = [xs.replace(’0’, ’ ’).split() for xs in blocks]

counts2 = [map(len, xx) for xx in counts]

counts3 = [(1 if xx < 1 else xx) for xx in map(max, counts2)]

counts4 = [(4 if xx > 4 else xx) for xx in counts3]

chisqr1 = [(counts4[xx] - n * pik[xx]) ** 2 / (n * pik[xx])

for xx in xrange(len(counts4))]

chisqr = reduce(su, chisqr1)

pval = spc.gammaincc(k / 2.0, chisqr / 2.0)

else:

print ’longestrunones128 failed, too few bits:’, len(binin)

pval = 0

return pval

def longestrunones10000(binin): # not well tested yet

if len(binin) > 128:

m = 10000

k = 6

pik = [0.0882, 0.2092, 0.2483, 0.1933, 0.1208, 0.0675, 0.0727]

blocks = [binin[xs * m:m + xs * m:] for xs in xrange(len(binin)

/ m)]

n = len(blocks)

counts = [xs.replace(’0’, ’ ’).split() for xs in blocks]

counts2 = [map(len, xx) for xx in counts]

counts3 = [(10 if xx < 10 else xx) for xx in map(max, counts2)]

counts4 = [(16 if xx > 16 else xx) for xx in counts3]

freqs = [counts4.count(spi) for spi in [10,11,12,13,14,15,16]]
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chisqr1 = [(freqs[xx] - n * pik[xx]) ** 2 / (n * pik[xx]) for xx in

xrange(len(freqs))]

chisqr = reduce(su, chisqr1)

pval = spc.gammaincc(k / 2.0, chisqr / 2.0)

else:

print ’longestrunones10000 failed, too few bits:’, len(binin)

pval = 0

return pval

# test 2.06

def spectraltest(binin):

n = len(binin)

ss = [int(el) for el in binin]

sc = map(sumi, ss)

ft = sff.fft(sc)

af = abs(ft)[1:n/2+1:]

t = np.sqrt(np.log(1/0.05)*n)

n0 = 0.95*n/2

n1 = len(np.where(af<t)[0])

d = (n1 - n0)/np.sqrt(n*0.95*0.05/4)

pval = spc.erfc(abs(d)/np.sqrt(2))

return pval

def nonoverlappingtemplatematchingtest(binin, mat="000000001", num=8):

n = len(binin)

m = len(mat)

M = n/num

blocks = [binin[xs*M:M+xs*M:] for xs in xrange(n/M)]

counts = [xx.count(mat) for xx in blocks]

avg = 1.0 * (M-m+1)/2 ** m

var = M*(2**-m -(2*m-1)*2**(-2*m))

chisqr = reduce(su, [(xs - avg) ** 2 for xs in counts]) / var

pval = spc.gammaincc(1.0 * len(blocks) / 2, chisqr / 2)
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return pval

def occurances(string, sub):

count=start=0

while True:

start=string.find(sub,start)+1

if start>0:

count+=1

else:

return count

def overlappingtemplatematchingtest(binin,mat="111111111",num=1032,numi=5):

n = len(binin)

bign = int(n / num)

m = len(mat)

lamda = 1.0 * (num - m + 1) / 2 ** m

eta = 0.5 * lamda

pi = [pr(i, eta) for i in xrange(numi)]

pi.append(1 - reduce(su, pi))

v = [0 for x in xrange(numi + 1)]

blocks = stringpart(binin, num)

blocklen = len(blocks[0])

counts = [occurances(i,mat) for i in blocks]

counts2 = [(numi if xx > numi else xx) for xx in counts]

for i in counts2: v[i] = v[i] + 1

chisqr = reduce(su, [(v[i]-bign*pi[i])** 2 / (bign*pi[i])

for i in xrange(numi + 1)])

pval = spc.gammaincc(0.5*numi, 0.5*chisqr)

return pval

def maurersuniversalstatistictest(binin,l=7,q=1280):

ru = [
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[0.7326495, 0.690],

[1.5374383, 1.338],

[2.4016068, 1.901],

[3.3112247, 2.358],

[4.2534266, 2.705],

[5.2177052, 2.954],

[6.1962507, 3.125],

[7.1836656, 3.238],

[8.1764248, 3.311],

[9.1723243, 3.356],

[10.170032, 3.384],

[11.168765, 3.401],

[12.168070, 3.410],

[13.167693, 3.416],

[14.167488, 3.419],

[15.167379, 3.421],

]

blocks = [int(li, 2) + 1 for li in stringpart(binin, l)]

k = len(blocks) - q

states = [0 for x in xrange(2**l)]

for x in xrange(q):

states[blocks[x]-1]=x+1

sumi=0.0

for x in xrange(q,len(blocks)):

sumi+=np.log2((x+1)-states[blocks[x]-1])

states[blocks[x]-1] = x+1

fn = sumi / k

c=0.7-(0.8/l)+(4+(32.0/l))*((k**(-3.0/l))/15)

sigma=c*np.sqrt((ru[l-1][1])/k)

pval = spc.erfc(abs(fn-ru[l-1][0]) / (np.sqrt(2)*sigma))

return pval

def lempelzivcompressiontest1(binin):

i = 1
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j = 0

n = len(binin)

mu = 69586.25

sigma = 70.448718

words = []

while (i+j)<=n:

tmp=binin[i:i+j:]

if words.count(tmp)>0:

j+=1

else:

words.append(tmp)

i+=j+1

j=0

wobs = len(words)

pval = 0.5*spc.erfc((mu-wobs)/np.sqrt(2.0*sigma))

return pval

def lempelzivcompressiontest(binin):

i = 1

j = 0

n = len(binin)

mu = 69586.25

sigma = 70.448718

words = []

while (i+j)<=n:

tmp=binin[i:i+j:]

if words.count(tmp)>0:

j+=1

else:

words.append(tmp)

i+=j+1

j=0

wobs = len(words)

pval = 0.5*spc.erfc((mu-wobs)/np.sqrt(2.0*sigma))
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return pval

# test 2.11

def serialtest(binin, m=4):

n = len(binin)

hbin=binin+binin[0:m-1:]

f1a = [hbin[xs:m+xs:] for xs in xrange(n)]

oo=set(f1a)

f1 = [f1a.count(xs)**2 for xs in oo]

f1 = map(f1a.count,oo)

cou =f1a.count

f2a = [hbin[xs:m-1+xs:] for xs in xrange(n)]

f2 = [f2a.count(xs)**2 for xs in set(f2a)]

f3a = [hbin[xs:m-2+xs:] for xs in xrange(n)]

f3 = [f3a.count(xs)**2 for xs in set(f3a)]

psim1 = 0

psim2 = 0

psim3 = 0

if m >= 0:

suss = reduce(su,f1)

psim1 = 1.0 * 2 ** m * suss / n - n

if m >= 1:

suss = reduce(su,f2)

psim2 = 1.0 * 2 ** (m - 1) * suss / n - n

if m >= 2:

suss = reduce(su,f3)

psim3 = 1.0 * 2 ** (m - 2) * suss / n - n

d1 = psim1-psim2

d2 = psim1-2 * psim2 + psim3

pval1 = spc.gammaincc(2 ** (m - 2), d1 / 2.0)

pval2 = spc.gammaincc(2 ** (m - 3), d2 / 2.0)

return [pval1, pval2]
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def cumultativesumstest(binin):

n = len(binin)

ss = [int(el) for el in binin]

sc = map(sumi, ss)

cs = np.cumsum(sc)

z = max(abs(cs))

ra = 0

start = int(np.floor(0.25 * np.floor(-n / z) + 1))

stop = int(np.floor(0.25 * np.floor(n / z) - 1))

pv1 = []

for k in xrange(start, stop + 1):

pv1.append(sst.norm.cdf((4 * k + 1) * z / np.sqrt(n)) -

sst.norm.cdf((4 * k - 1) * z / np.sqrt(n)))

start = int(np.floor(0.25 * np.floor(-n / z - 3)))

stop = int(np.floor(0.25 * np.floor(n / z) - 1))

pv2 = []

for k in xrange(start, stop + 1):

pv2.append(sst.norm.cdf((4 * k + 3) * z / np.sqrt(n)) -

sst.norm.cdf((4 * k + 1) * z / np.sqrt(n)))

pval = 1

pval -= reduce(su, pv1)

pval += reduce(su, pv2)

return pval

def cumultativesumstestreverse(binin):

pval=cumultativesumstest(binin[::-1])

return pval

def pik(k,x):

if k==0:

out=1-1.0/(2*np.abs(x))
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elif k>=5:

out=(1.0/(2*np.abs(x)))*(1-1.0/(2*np.abs(x)))**4

else:

out=(1.0/(4*x*x))*(1-1.0/(2*np.abs(x)))**(k-1)

return out

def randomexcursionstest(binin):

xvals=[-4, -3, -2, -1, 1, 2, 3, 4]

ss = [int(el) for el in binin]

sc = map(sumi,ss)

cumsum = np.cumsum(sc)

cumsum = np.append(cumsum,0)

cumsum = np.append(0,cumsum)

posi=np.where(cumsum==0)[0]

cycles=([cumsum[posi[x]:posi[x+1]+1] for x in xrange(len(posi)-1)])

j=len(cycles)

sct=[]

for ii in cycles:

sct.append(([len(np.where(ii==xx)[0]) for xx in xvals]))

sct=np.transpose(np.clip(sct,0,5))

su=[]

for ii in xrange(6):

su.append([(xx==ii).sum() for xx in sct])

su=np.transpose(su)

pikt=([([pik(uu,xx) for uu in xrange(6)]) for xx in xvals])

# chitab=1.0*((su-j*pikt)**2)/(j*pikt)

chitab=np.sum(1.0*(np.array(su)-j*np.array(pikt))**2

/(j*np.array(pikt)),axis=1)

pval=([spc.gammaincc(2.5,cs/2.0) for cs in chitab])

return pval

def getfreq(linn, nu):

val = 0

for (x, y) in linn:
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if x == nu:

val = y

return val

def randomexcursionsvarianttest(binin):

ss = [int(el) for el in binin]

sc = map(sumi, ss)

cs = np.cumsum(sc)

li = []

for xs in sorted(set(cs)):

if np.abs(xs) <= 9:

li.append([xs, len(np.where(cs == xs)[0])])

j = getfreq(li, 0) + 1

pval = []

for xs in xrange(-9, 9 + 1):

if not xs == 0:

# pval.append([xs, spc.erfc(np.abs(getfreq(li, xs) - j) /

np.sqrt(2 * j * (4 * np.abs(xs) - 2)))])

pval.append(spc.erfc(np.abs(getfreq(li, xs) - j) /

np.sqrt(2 * j * (4 * np.abs(xs) - 2))))

return pval

def aproximateentropytest(binin, m=10):

n = len(binin)

f1a = [(binin + binin[0:m - 1:])[xs:m + xs:] for xs in xrange(n)]

f1 = [[xs, f1a.count(xs)] for xs in sorted(set(f1a))]

f2a = [(binin + binin[0:m:])[xs:m + 1 + xs:] for xs in xrange(n)]

f2 = [[xs, f2a.count(xs)] for xs in sorted(set(f2a))]

c1 = [1.0 * f1[xs][1] / n for xs in xrange(len(f1))]

c2 = [1.0 * f2[xs][1] / n for xs in xrange(len(f2))]

phi1 = reduce(su, map(logo, c1))

phi2 = reduce(su, map(logo, c2))

apen = phi1 - phi2
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chisqr = 2.0 * n * (np.log(2) - apen)

pval = spc.gammaincc(2 ** (m - 1), chisqr / 2.0)

return pval

def matrank(mat): ## old function, does not work as advertized -

gives the matrix rank, but not binary

u, s, v = np.linalg.svd(mat)

rank = np.sum(s > 1e-10)

return rank

def mrank(matrix): # matrix rank as defined in the NIST specification

m=len(matrix)

leni=len(matrix[0])

def proc(mat):

for i in xrange(m):

if mat[i][i]==0:

for j in xrange(i+1,m):

if mat[j][i]==1:

mat[j],mat[i]=mat[i],mat[j]

break

if mat[i][i]==1:

for j in xrange(i+1,m):

if mat[j][i]==1: mat[j]=[mat[i][x]^mat[j][x]

for x in xrange(leni)]

return mat

maa=proc(matrix)

maa.reverse()

mu=[i[::-1] for i in maa]

muu=proc(mu)

ra=np.sum(np.sign([xx.sum() for xx in np.array(mu)]))

return ra

def binarymatrixranktest(binin,m=32,q=32):

p1 = 1.0
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for x in xrange(1,50): p1*=1-(1.0/(2**x))

p2 = 2*p1

p3 = 1-p1-p2;

n=len(binin)

u=[int(el) for el in binin] # the input string as numbers,

to generate the dot product

f1a = [u[xs*m:xs*m+m:] for xs in xrange(n/m)]

n=len(f1a)

f2a = [f1a[xs*q:xs*q+q:] for xs in xrange(n/q)]

# r=map(matrank,f2a)

r=map(mrank,f2a)

n=len(r)

fm=r.count(m);

fm1=r.count(m-1);

chisqr=((fm-p1*n)**2)/(p1*n)+((fm1-p2*n)**2)/(p2*n)+

((n-fm-fm1-p3*n)**2)/(p3*n);

pval=np.exp(-0.5*chisqr)

return pval

def lincomplex(binin):

lenn=len(binin)

c=b=np.zeros(lenn)

c[0]=b[0]=1

l=0

m=-1

n=0

u=[int(el) for el in binin] # the input string as numbers, to generate

the dot product

p=99

while n<lenn:

v=u[(n-l):n] # was n-l..n-1

v.reverse()

cc=c[1:l+1] # was 2..l+1

d=(u[n]+np.dot(v,cc))%2

if d==1:
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tmp=c

p=np.zeros(lenn)

for i in xrange(0,l): # was 1..l+1

if b[i]==1:

p[i+n-m]=1

c=(c+p)%2;

if l<=0.5*n: # was if 2l <= n

l=n+1-l

m=n

b=tmp

n+=1

return l

# test 2.10

def linearcomplexitytest(binin,m=500):

k = 6

pi = [0.01047, 0.03125, 0.125, 0.5, 0.25, 0.0625, 0.020833]

avg = 0.5*m + (1.0/36)*(9 + (-1)**(m + 1)) - (m/3.0 + 2.0/9)/2**m

blocks = stringpart(binin, m)

bign = len(blocks)

lc = ([lincomplex(chunk) for chunk in blocks])

t = ([-1.0*(((-1)**m)*(chunk-avg)+2.0/9) for chunk in lc])

vg=np.histogram(t,bins=[-9999999999,-2.5,-1.5,-0.5,0.5,1.5,2.5,

9999999999])[0][::-1]

im=([((vg[ii]-bign*pi[ii])**2)/(bign*pi[ii]) for ii in xrange(7)])

chisqr=reduce(su,im)

pval=spc.gammaincc(k/2.0,chisqr/2.0)

return pval

def testall(bits):

print ’Length:\t\t\t\t\t’, len(bits)

print

print ’monobitfrequencytest\t\t\t’, monobitfrequencytest(bits)

print ’blockfrequencytest\t\t\t’, blockfrequencytest(bits, 3)
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print ’runstest\t\t\t\t’, runstest(bits)

print ’spectraltest\t\t\t\t’, spectraltest(bits)

print ’nonoverlappingtemplatematching\t\t’,

nonoverlappingtemplatematchingtest(bits, ’1001’, 10)

print ’overlapingtemplatematching\t\t’,

overlappingtemplatematchingtest(bits, ’100’, 12, 5)

print ’serialtest\t\t\t\t’, serialtest(bits, 10)

print ’cumulativesumstest\t\t\t’, cumultativesumstest(bits)

print ’aproximateentropytest\t\t\t’, aproximateentropytest(bits, 4)

print ’randomexcursionsvarianttest\t\t’,

randomexcursionsvarianttest(bits)

print "linearcomplexitytest\t\t\t",linearcomplexitytest(bits,10)

print "binarymatrixranktest\t\t\t",binarymatrixranktest(bits,3,4)

print "lempelzivcompressiontest\t\t",lempelzivcompressiontest(bits)

print "longestrunones10000\t\t",longestrunones10000(bits)

print "maurersuniversalstatistictest\t\t",

maurersuniversalstatistictest(bits,12,5)

print "randomexcursionstest\t\t\t",randomexcursionstest(bits)

return
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